1 how do things move without contact?

1.0.1 inverse square law

inverse square law states that if the distance is increased by a factor of \(a\), then the force is decreased by a factor of \(a^2\).

\[F\propto{\frac{1}{r^2}}\]

1.1 gravitational

name symbol units
mass \(M,m\) \((kg)\)
gravitational field strength \(g\) \((Nkg^{-1})(ms^{-2})\)
gravitational constant \(G\) \((m^3kg^{-1}s^{-2})\)
gravitational force \(F_g\) \((N)\)
gravitational potential energy \(E_g\) \((J)\)

\[G=6.67\times{}10^{-11}\]

\[g=\frac{GM}{r^2}\]

\[F_g=mg=\frac{GMm}{r^2}\]

\[E_g=mg\Delta{h}\]

1.1.1 kepler’s law

kepler’s law states that the period of orbit square divided by the radius of orbit cubed is a constant.

\[\frac{T^2}{r^3}=\frac{4\pi^2}{GM}\]

1.2 electrical

name symbol units
charge \(Q,q\) \((C)\)
electrical field strength \(E\) \((NC^{-1})(Vm^{-1})\)
coulomb’s constant \(k\) \((Nm^2C^{-2})\)
electric force \(F_e\) \((N)\)
voltage \(V\) \((V)\)
distance \(d\) \((m)\)
work done \(W\) \((J)\)

\[Q_{proton}=1.6\times{}10^{-19}\]

\[m_{electron}=9.1\times{}10^{-31}\]

\[k=\frac{1}{4\pi{}\varepsilon_0}=8.987\times{}10^9\]

\[E=\frac{kQ}{r^2}\]

\[F_e=qE=\frac{kQq}{r^2}\]

\[W=fd=qV\]

1.3 magnetic

name symbol units
charge \(q\) \((C)\)
velocity \(v\) \((ms^{-1})\)
magnetic field strength \(B\) \((T)\)
number of loops \(n\)
current \(I\) \((A)\)
length \(l\) \((m)\)

1.3.1 lorentz force \((N)\)

\[F_m=qvB\]

\[F_m=nilB\]

right hand grip rule

right hand grip rule

right hand lorentz rule

right hand lorentz rule

parallel current carrying wires

parallel current carrying wires