1 functions and graphs
1.1 modulus function
\[|f(x)|=\begin{cases} -f(x) & ,f(x)\lt{}0 \\ f(x) & ,f(x)\geq{}0 \end{cases}\]
it can also be represented as \(|x|=\sqrt{x^2}\)
1.2 conic sections
1.2.1 circles
\[(x-h)^2+(y-k)^2=r^2\]
circle with center \((h,k)\) and radius \(r\)
1.2.2 ellipses
\[(\frac{x-h}{a})^2+(\frac{y-k}{b})^2=1\]
ellipse with center \((h,k)\), width \(2a\) and height \(2b\)
1.2.3 hyperbolas
\[(\frac{x-h}{a})^2-(\frac{y-k}{b})^2=1\] \[-(\frac{x-h}{a})^2+(\frac{y-k}{b})^2=1\]
asymptotes: \(y=\pm\frac{b}{a}(x-h)+k\)
1.3 inverse circular functions
function | domain | range |
---|---|---|
\(\arcsin(x)\) | \([0,1]\) | \([-\frac{\pi}{2},\frac{\pi}{2}]\) |
\(\arccos(x)\) | \([0,1]\) | \([0,\pi]\) |
\(\arctan(x)\) | \([-\infty,\infty]\) | \([-\frac{\pi}{2},\frac{\pi}{2}]\) |
1.4 parametric equations
\[x=f(t)\] \[y=g(t)\]
use simultaneous equation to solve parametric equations