5 calculus

5.1 continuity and differentiability

\(f(x)\) is continous at \(x=a\) where

  • \(f(a)\) is defined
  • \(\lim_{x\to{}a}f(x)=f(a)\)

a function is differentiable if it is continuous and its derivative is also continuous at all values of \(x\)

5.2 differentiation

if \(f'(x)\) is the derivative function of a function \(f(x)\) then \(f'(a)\) returns the gradient of the function \(f(x)\) at \(x=a\)

\[f'(x)=\lim_{h\to{}0}\frac{f(x+h)-f(x)}{h}\]

5.2.1 common derivative

\(f(x)\) \(f'(x)\)
\(x^n\) \(nx^{n-1}\)
\((ax+b)^n\) \(an(ax+b)^{n-1}\)
\(e^{f(x)}\) \(f'(x)e^{f(x)}\)
\(\log_ef(x)\) \(\frac{f'(x)}{f(x)}\)
\(\sin{f(x)}\) \(f'(x)\cos{f(x)}\)
\(\cos{f(x)}\) \(-f'(x)\sin{f(x)}\)
\(\tan{f(x)}\) \(f'(x)\sec^2{f(x)}\)

5.2.2 chain rule

\[\frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}\]

5.2.3 product rule

\[\frac{d}{dx}uv=v\frac{du}{dx}+u\frac{dv}{dx}\]

5.2.4 quotient rule

\[\frac{d}{dx}uv=\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}\]

5.3 antidifferentiation