3 more functions

3.1 power functions

3.2 exponentials and logarithms

3.2.1 exponential functions

for \(a\in{}R^+\setminus\{1\}\), the graph \(y=a^x\) has the following properties:

  • the y-axis intercept is 1
  • the x-axis is an asymptote
index laws
\(x^a\times{}x^b=x^{a+b}\) \(x^a\div{}x^b=x^{a-b}\)
\((xy)^a=x^ay^a\) \((\frac{x}{y})^a=\frac{x^a}{y^a}\)
\((x^a)^b=x^{ab}\) \(x^0=1\)

3.2.2 logarithmic functions

for \(a\in{}R^+\setminus\{1\}\), the graph \(y=\log_ax\) has the following properties:

  • the x-axis intercept is 1
  • the y-axis is an asymptote
log laws
\(\log_a1=0\) \(\log_aa=1\)
\(\log_am+\log_an=\log_a(mn)\) \(\log_am-\log_an=\log_a(\frac{m}{n})\)
\(p\log_am=\log_a(m^p)\) \(\log_am=\frac{\log_em}{\log_ea}=\frac{\log_{10}m}{\log_{10}a}\)

3.2.3 exponential growth and decay

model for quantity growing/decaying at an exponential rate:

\(A=A_0b^t\)

  • \(A_0\) is the initial quantity
  • \(b=e^k\) is the rate constant (growth if \(b>1\), decay if \(b<1\))
  • \(t\) is time

cell growth - doubles every \(T_D\) (unit of time):

\(N=N_02^{\frac{t}{T_D}}\)

  • \(N_0\) is the initial quantity
  • \(T_D\) is the generation time (how long it takes to double)
  • \(t\) is time

3.3 circular functions

3.3.1 exact values

for \(x\in{[0,\frac{\pi}{2}]}\)

function \(0\) \(\frac{\pi}{6}\) \(\frac{\pi}{4}\) \(\frac{\pi}{3}\) \(\frac{\pi}{2}\)
\(\sin\) \(0\) \(\frac{1}{2}\) \(\frac{1}{\sqrt{2}}\) \(\frac{\sqrt{3}}{2}\) \(1\)
\(\cos\) \(1\) \(\frac{\sqrt{3}}{2}\) \(\frac{1}{\sqrt{2}}\) \(\frac{1}{2}\) \(0\)
\(\tan\) \(0\) \(\frac{1}{\sqrt{3}}\) \(1\) \(\sqrt{3}\) \(\text{undefine}\)

3.3.2 symmetric properties

\(-x\) \(\pi-x\) \(\pi+x\)
\(\sin(-x)=-\sin(x)\) \(\sin(\pi-x)=\sin(x)\) \(\sin(\pi+x)=-\sin(x)\)
\(\cos(-x)=\cos(x)\) \(\cos(\pi-x)=-\cos(x)\) \(\cos(\pi+x)=-\cos(x)\)
\(\tan(-x)=-\tan(x)\) \(\tan(\pi-x)=-\tan(x)\) \(\tan(\pi+x)=\tan(x)\)

3.3.3 complementary angles

\(\frac{\pi}{2}-x\) \(\frac{\pi}{2}+x\)
\(\sin(\frac{\pi}{2}-x)=\cos(x)\) \(\sin(\frac{\pi}{2}+x)=\cos(-x)\)
\(\cos(\frac{\pi}{2}-x)=\sin(x)\) \(\cos(\frac{\pi}{2}+x)=\sin(-x)\)